
Design of a wide field diffractive landscape lens
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The third-order aberrations of a diffractive optical element with paraxial zone spacings are derived as a
function of aperture stop position. It is shown that by placing the stop in the front focal plane, coma and
astigmatism are identically zero, assuming an infinitely distant object. In addition, since the element is
diffractive, the Petzval sum is also zero. Modulation transfer function comparisons with other lenses are
given. The correction of spherical aberration using an aspheric plate located in the aperture stop and
nonmonochromatic imaging performance are discussed. The distortion of the resulting system is shown to be
the proper amount for use as a Fourier transform lens. An estimate for the space-bandwidth product of this
Fourier transform system is given.

1. Introduction

The first studies of the aberration properties of dif-
fractive lenses were commonly done by comparing op-
tical path or equivalently phase differences between an
object point and image point.1y (The term diffractive
lens refers to all optical devices that utilize diffraction
in an image forming capability. Familiar diffractive
lenses are holographic optical elements, both optically
recorded and computer generated, and zone plates.)
While giving correct results, these solutions were most
often obtained for the special case of the element itself
being the limiting aperture (i.e., the aperture stop) or
the only element in the system. It is a well-known
result of conventional aberration theory that the mag-
nitude of the various aberration coefficients are func-
tions of stop position, and thus the stop position must
be taken into account in any general treatment of
diffractive lens aberrations.

In 1977 it was shown independently by Sweatt5 and
Kleinhans6 that a diffractive lens is mathematically
equivalent to a thin lens with an infinite refractive
index. Using this thin lens analogy, it is possible to
apply the results of geometrical optics to diffractive
lenses without the need to calculate a special class of
formula that applies only to diffractive optics. Calcu-
lating the aberrations of optically recorded holograph-
ic optical elements with a remote stop was addressed
recently by Bobrov and Turkevich7 and Gan.8 These
authors consider only the case of HOEs formed by the
interference of two spherical waves. We are con-
cerned with a more general diffractive lens, which does
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not correspond to a two-spherical-wave interference
pattern.

In particular, for this paper we make use of the so-
called stop shift equations for the third-order (Seidel)
aberrations in the design of a diffractive landscape
lens. We show that a simple system consisting of a
single planar diffractive lens with a remote stop can be
corrected for coma, astigmatism, and field curvature
and thus provide a (monochromatic) imaging perfor-
mance superior to conventional systems containing
several lens elements. In addition to imaging applica-
tions, we find that this system is well suited for use as a
Fourier transform lens.

II. Seidel Aberrations of Paraxial Diffractive Lens

We are particularly interested in a type of diffractive
lens known as a kinoform,9-1 which has the advan-
tages of being a thin structure with a very high diffrac-
tion efficiency. However, the analysis that follows is
applicable to any diffractive lens that utilizes a Fresnel
zone structure. Also, all the analysis is concerned with
only a single diffracted order, since the lens model
neglects the possibility of multiple diffracted orders.

The Fresnel (full-period) zones, defined in a plane
perpendicular to the optical axis, are defined so that
the optical path length from the edge of the mth zone is
m design wavelengths (design wavelength = 0) longer
than the on-axis path length f (which is also the prima-
ry focal length of the element).4 This is the exact
specification of the zones for an infinitely distant ob-
ject. A similar definition can be formed for the case of
finite conjugates; we are concerned here with only the
infinite conjugates case. Thus the radii of the zones in
the x-y plane are given by

rm = _2mkJ + (mX0 )2 . (1)

In the paraxial region, f >> mX0, and Eq. (1) can be
approximated as
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tively, the so-called bending and conjugate dimension-
less parameters defined as

clc 2 U +U'
B=C1 -C2 , =U - U (9)

Image

Object

Fig. 1. Pictorial illustration of various paraxial quantities. The
numerical value of all symbols is positive with the exception of u'.

rm,paraxial = 2MxJ. (2)

A diffractive lens with Fresnel zones defined by Eq. (2)
for all values of r will be termed a paraxial diffractive
lens.

To introduce the notation to be used in the following
discussion of the aberrations of a paraxial diffractive
lens, we give here one form of the familiar third-order
aberrations of a thin lens with stop in contact. The
notation and sign convention are those of Welford.12

The wavefront aberration polynomial has the form (to
third order)13

W(h,p,cosk) = '/8SIp4 + 1/2SIIhp3 cosq + 1/2SI 1h
2p2 cos2 (

+ 1/4(SIII + SIv)h 2p2 + l/2Svh3p cosp. (3)

In Eq. (3), h is the normalized object height and p and k
are the polar pupil coordinates (p is the normalized
radius coordinate). The Seidel sums (Si-Sv) for a thin
lens are given by
Spherical aberration:

s 4=X3 I(n ~ n +2B2+4(n +)BSI = 4 1)2+ 1) 2 +(n- 1) BT

+ 3n + 2 T2] + 8Gy4(An);
n I

Coma:

-Y20=FH n+1 2n+1
Si = 2 l ~-)B + n ]1 

Astigmatism:
SI,, = H2¢; (6)

Petzval curvature of field:

Si H20 (7)
n

Distortion:
Sv = O. (8)

In Eqs. (4)-(8), n is the index of refraction of the lens, y
is the paraxial marginal ray height at the lens, X = (cl -
C2) (n - 1) is the power of the lens (c, and c2 are the
curvatures of the two lens surfaces), H is the Lagrange
invariant, G is the fourth-order aspheric deformation
of a surface (if either or both surfaces are not spheri-
cal), An is the change in refractive index on passing
through the aspheric surface, and B and T are, respec-

In Eq. (9), u and u' are the paraxial ray angles for the
paraxial marginal ray entering and leaving the thin
lens. In the following, paraxial quantities that are
barred refer to the appropriate quantity for the parax-
ial chief ray, i.e., the ray that passes through the center
of the aperture stop. Figure 1 illustrates the defini-
tions of some of these paraxial quantities for a simple
thin lens.

In accord with Refs. 5 and 6, the aberration coeffi-
cients for a diffractive lens may be obtained by taking
the limit as n -- of Eqs. (4)-(8). For a paraxial
diffractive lens with all zones defined by Eq. (2), the
aspheric coefficient G is equal to zero for both surfaces
of the equivalent thin lens.6 For the case of an infi-
nitely distant object, the conjugate parameter T is
equal to-1. Thus the Seidel sums for a planar, parax-
ial diffractive lens, object at infinity, stop in contact
are

SI = _f_3 (a s (10)

(11)-y3= / X \2
SII= f2 VA) 

y 2-2 ( AX,
f ) 

SIV =0

Sv = .

(12)

(13)

(14)

In Eqs. (10)-(14) we used the fact that for a diffractive
(4) lens utilizing the first diffracted order, the paraxial

power is given by

(5)

(15)0(X) = X0 =--
So So f

where f is the focal length for X = X0, and at the lens the
Lagrange invariant is equal to

H = -uy, (16)

barred quantities referring to paraxial values for the
chief ray.

For completeness, we include here the parameters
for a nonparaxial diffractive lens that has Fresnel
zones defined by Eq. (1). The only change is that the
coefficient G of the convex surface of the equivalent
lens is equal to5 '6

(17)G = n2(o) -11

8/3[n(X) -1]3

Equation (17) is derived from the well-known result
than an infinitely distant on-axis point is stigmatically
imaged by an aspheric plano-convex lens, where the
convex surface is a hyperbola is eccentricity E = n(Xo).
The coefficient G of Eq. (17) is the fourth-order
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aspheric deviation term in the binomial expansion of
this hyperbolic surface. Thus, using Eqs. (4) and (17)
and taking the limit as n - a, the total third-order
spherical aberration for this element when used at
infinite conjugates is given by

S Hy4 tX3- X02)
(18)

Equation (18) confirms the expected result that at X =
Xo, this element is free from spherical aberration.

Now we shall consider the effects of moving the stop
away from the paraxial diffractive lens. The Seidel
sums after the stop shift (denoted by an asterisk) are
related to the stop-in-contact sums via the stop-shift
equations,' 5 i.e.,

SI = SI, (19)

SI = S + SI, (20)

SI, = SI, + 2 SII + (y) SI, (21)

Siv= SIV, (22)

S = Sv + (3SIII + S) + 3 (y) SII + ( SI. (23)

For this simple system of a single element with a re-
mote stop we can write

y = tu, (24)

2 2(t f)2
SI,, = Y U/3

SIv = 0,

s y 3t(3f2 -3t+ t2)
/ 3

(27)

(28)

(29)

For wavelengths other than the design wavelength, the
quantity f in Eqs. (25)-(29) should be replaced by (X0/
X)f.

From Eqs. (26) and (27) we see the important result
that if the aperture stop is placed in the front focal
plane, as shown in the schematic layout of Fig. 2 (i.e.,
the lens is made telecentric in image space), then t = f
and third-order coma and astigmatism are identically
zero. Since the Petzval term is also zero, both tangen-
tial and sagittal fields are flat. This is in contrast to
the glass landscape lens, which has a flat field in only
one meridian.16 Since the remaining third-order
spherical aberration limits this diffractive lens to oper-
ation at relatively modest apertures, the higher order
aberrations are essentially negligible compared with
the Seidel aberrations for practical field angles. Thus
the third-order aberrations for this telecentric paraxial
diffractive lens are

SI = SI, = S 0
-yS= Yu . 0

(30)

(31)

(32)

where t is the distance from the stop to the diffractive
lens. Due to the large amount of chromatic aberration
inherent in diffractive optics [see Eq. (15)], a diffrac-
tive lens singlet is limited to monochromatic opera-
tion. Since a diffractive kinoform can be designed for
operation at any center wavelength, we consider only
the case of X = X0. Using Eqs. (10)-(14) and (24) in
Eqs. (19)-(23), we find the resultant aberrations with X

SI. = ' rX(25)

=,

/3 (6

t f

7
Aperture Paraxial
Stop Diffractive

Lens

Optical
Axis

Image
Plane

Fig. 2. Layout of telecentric paraxial diffractive lens. The aper-
ture stop for the system is placed in the front focal plane of the lens.

Equation (31) indicates that the field aberrations of
coma, astigmatism, and curvature of field are identi-
cally zero for this system, allowing for the imaging of
extended objects with little variation in image quality
across the field. (Of course, the aperture size is limited
by the uncorrected spherical aberration. The toler-
ance on aperture size is discussed in a following sec-
tion.) This diffractive lens singlet system exhibits a
degree of isoplanatism comparable with refractive sys-
tems containing more elements.

As an example of the performance of this diffractive
lens system, we compare its performance to a scaled
version of a Cooke triplet from Kingslake.17 The con-
struction parameters for this triplet are given in Table
I. Both lenses have a focal length of 50 mm and a
relative aperture of f/5.6 covering a half field of view of
9.00. The field of view of the telecentric diffractive
lens is limited by the size of the element itself. To
avoid vignetting, the semiaperture a of the lens must
satisfy

Table 1. System Specifications for 50-mm Focal Length Cooke Triplet

Surface Curvature (mm-') Thickness (mm) Glass

1 0.045398 3.000125 SK16
2 -0.008704 7.000116 Air
3 (stop) -0.058490 1.249783 F4
4 0.065915 7.000371 Air
5 0.010469 1.900544 SK16
6 -0.065708 43.791995 Air
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Fig. 3. Modulation transfer functions for f15.6 Cooke triplet; (a) full field (9.0° off-axis); (b) 0.7 field (6.33° off-axis); (c) on-axis. The focal

length is 50 mm, and the design wavelength is 0.58756,um. The triplet system specifications are given in Table I. In each plot, three curves are

given-the diffraction limited MTF and the system MTF for tangential and sagittal orientations of the target grating lines.
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Fig.4. Modulation transfer functions forf/5.6 telecentric paraxial diffractive lens; (a) full field (9.0 off-axis); (b) 0.7 field (6.33° off-axis); (c)

on-axis. The focal length is 50 mm, and the design wavelength is 0.58756 im.
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Fig.5. Modulation transfer functions for f/5.6 optically recorded HOE: (a) full field (9.0° off-axis); (b) 0.7 field (6.33° off-axis); (c) on-axis.

The focal length is 50 mm, and the design wavelength is 0.58756 jm.

Table II. System Specifications for 50-mm Focal Length Germanium
Landscape Lens

Surface Curvature (mm-') Thickness (mm) Glass

1 (stop) 0.000000 43.112883 Air
2 0.004314 4.000020 Ge
3 -0.002376 48.869530 Air
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y+y-a, (33)

or, equivalently for this system,

y + f tan(O) < a. (34)

Using Eq. (34) as an equality, we can solve for 0 max, the
largest unvignetted field angle. Using the relations

yf = Fteme (35)

f = l~n8^ (36)

we find the result

Om.=~ =tan- 1 1371
[2 Fl~5 Fs4# tem

Existing technologies allow for the fabrication of kino-
form lenses for use in the visible with relative apertures
up to -f/2. Thus an f/2 diffractive lens and f/15.6
system produce a maximum unvignetted field of view
of -9.0° according to Eq. (37). Figures 3 and 4 show
the monochromatic ( = Xo = 0.58756,um) modulation
transfer functions for a Cooke triplet and a telecentric
paraxial diffractive lens calculated on-axis, at 0.7 field,
and full field. The MTFs were calculated using the
optical design program Super-Oslo,18 and the diffrac-
tive lens was modeled as a thin plano-convex (spherical
surface) lens" of refractive index n = 10,001. Super-
Oslo calculates the MTF by tracing a grid of rays
through the system and performing a numerical auto-
correlation of the resulting pupil function. We see
that the diffractive lens compares favorably with the
triplet with respect to MTF. However, not surprising-
ly, the triplet exhibits superior distortion correction,
-0.0898% vs -1.230% at the edge of the field. Exami-
nation of the higher order aberrations of the diffractive
lens reveals that (other than distortion) the largest
field aberration is fifth-order elliptical coma. Howev-
er, the elliptical coma (in Buchdahl's notation1 9 7 =
-0.792 m,M = -0.396 m,M9 = -0.396 ,m) is 1 or 2
orders of magnitude smaller than the third-order
spherical aberration ( = -17.8 Mm).

For comparison, Fig. 5 shows the MTF curves for an
optically recorded HOE of the same focal length and
aperture. On-axis, the HOE is diffraction limited, as
is well known for a HOE formed and used at the same
conjugates. At 9.00 off-axis, however, the effects of
the uncorrected field aberrations, coma in particular,
can be seen in the degradation of the MTF. Optically
recorded HOEs can be corrected either for coma, by
forming the hologram on a spherical surface, 20 or for
astigmatism, by suitable location of the aperture
stop.2 1

If the same telecentric paraxial diffractive lens de-
scribed above is stopped down to a relative aperture of
f18, the unvignetted half-field increases to -10.5°. At
this aperture, the spherical aberration is small enough
that the lens is essentially diffraction limited over the
entire field.

For large field angles, the performance of the lens is
limited by the diffraction efficiency of the diffractive

lens. Computer calculations of the point spread func-
tion for the kinoform described above show that the
diffraction efficiency remains >95% (for the design
wavelength) for field angles up to 12.50. These calcu-
lations were performed by tracing a polar grid of rays at
a specified field angle through the kinoform keeping
track of optical path lengths and ray coordinates. The
Huygens-Fresnel principle was then used to propagate
the diffracted plane wave from the kinoform to the
desired image plane. The diffraction integral was cal-
culated numerically, and the squared magnitude was
used to 'determine the intensity of the point spread
function. The peak value of the point spread function,
normalized to unity for a perfectly spherical diffracted
wave (Strehl intensity), found by this procedure is
compared to the corresponding value found by using
the thin lens model (which assumes 100% efficiency).
The ratio gives the diffraction efficiency. (This nor-
malization procedure is necessary to eliminate the ef-
fects of lens aberrations in the degradation of the
Strehl intensity.) Note that with the kinoform orient-
ed so that the surface relief structure faces the image,
at field angles greater than -15°, total internal reflec-
tion of the light incident on the curved facets degrades
the diffraction efficiency seriously. This problem may
be reduced by orienting the curved facets away from
the image, but then the aberrational effects of the
finite thickness substrate material must then be con-
sidered in determining image quality. In any event,
for the range of field angles considered in this paper,
orienting the surface relief structure toward the image
does not present a problem and is the preferred em-
bodiment.

Since the zone locations are a strong function of
wavelength, a diffractive lens designed for use in the
thermal IR ( = 8-12,Mm) has many fewer diffracting
zones than an element to be used in the visible spectral
region and should be easier to fabricate. For example,
a 50-mm focal length diffractive lens with a relative
aperture of f/2 has 2659 diffracting zones if the design
wavelength is 0.58756 Am but only 156 zones if X0 = 10
,um. The flat field nature of the telecentric paraxial
diffractive lens makes this lens suitable for use with
focal plane arrays. Figures 6 and 7 compare the per-
formance of a germanium landscape lens and the dif-
fractive landscape lens at Xo = 10,m, f = 50 mm, F#stem
= 3.0, and a half field of view of 100. The construction
parameters for the germanium lens are given in Table
II.

111. Correction of Spherical Aberration

As mentioned previously, the aperture size of this
telecentric paraxial diffractive lens is limited by the
uncorrected spherical aberration. One way to im-
prove the performance of this lens at higher apertures
is to insert an appropriately figured aspheric plate in
the aperture stop, as shown in Fig. 8. This is formally
analogous to the Schmidt camera, which uses an
aspheric plate in conjunction with a spherical mirror.
Since the aspheric surface is located at the aperture
stop, the plate contributes only spherical aberration
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Fig. 6. Modulation transfer functions for ff3.0 germanium landscape lens; (a) full field (10.00 off-axis); (b) 0.7 field (7.04° off-axis); (c) on-
axis. The focal length is 50 mm, and the design wavelength is 10gm.
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(c) on-axis. The focal length is 50 mm, and the design wavelength is 10 Am.
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Solving Eq. (39) for G, we find that the necessary
asphericity is
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Fig. 8. Layout of the telecentric paraxial diffractive lens with
spherical aberration corrected by a Schmidt aspheric plate located

in the aperture stop.

(to third order), and thus the correction of the field
aberrations is unaffected by this plate. The amount of
fourth-order asphericity required is easily determined
from the aspheric contributions to the Seidel aberra-
tions. For a refracting surface defined by z = Gr4

+ . .. , the contribution to spherical aberration is given
by22

S = 8Gy4A(n), (38)

where A(n) is the change of refractive index on passing
through the aspheric surface. For the total spherical
aberration to be zero, we require S* + 6S, = 0. Thus,
using Eqs. (30) and (38),

G = -1
8f3A(n)

Of course, for extremely high apertures, higher order
asphericities will be necessary to correct fifth and high-
er order spherical aberration. However, it can be
shown that the magnitude of the ratio of third order to
fifth order spherical aberration [the aberration poly-
nomial in this case is given by W(h,p,cosk) = W0 4 0 p 4 +
W 0 6 0 p6 ] is given by

W040 = 8(Ffstem)2 e (41)

so that for practical systems the third order term is
dominant by at least an order of magnitude. Also, a
theoretical analysis of Schmidt cameras has shown
that a fourth-order asphericity is sufficient for relative
apertures >f/3 and that the location of the aspheric
surface on either the front or back surface of the plate
affects only higher order aberrations.2 3 A telecentric
paraxial diffractive lens of 50-mm focal length, F#st
= 3.0, Xo = 0.58756 gm, with an aspheric plate designed
according to Eq. (40) in the stop plane is essentially
diffraction limited over the unvignetted half-field of
7.00.
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mm, Xpcak = 0.544sum, Fs#em = 8: (a) = 1 nm; (b) a = 2 nm; (c) a = 5 nm; (d) a = 10 nm.

IV. Quasi-Monochromatic Performance

All the analysis to this point has assumed a mono-
chromatic object. In actuality, of course, no physical
source is truly monochromatic. To assess the imaging
performance of this diffractive lens in quasi-mono-
chromatic light, we used Super-Oslo to calculate poly-
chromatic MTFs for finite bandwidth illumination.
Figures 9(a)-(d) show the polychromatic on-axis MTF
for Gaussian spectral line shapes of standard devi-
ations of a = 1,2, 5, and 10 nm, respectively. The lens
used in these calculations had a 50-mm focal length at
the design wavelength (the mean of the Gaussian spec-
tral line) and an f/No. of F#stem = 8. The plots clearly
show the degradation of performance with increasing
linewidth, as would be expected, given the large
amount of chromatic aberration. As an illustrative
example of typical performance with an actual quasi-
monochromatic source, Fig. 10 shows the polychro-
matic on-axis MTF for a diffractive lens with the spec-
tral weightings assigned according to the relative
intensities in the primary yellowish green emission
(Xpeak = 0.544 Am) of a P43 phosphor. 2 4 We see that
the performance has been degraded slightly due to the
finite bandwidth of the source.

ensure a linear relationship between position in the
transform plane and spatial frequency in the object for
all spatial frequencies. For an image height according
to Y = f sin(0), the transverse ray aberration (to third
order) should be

e, = f sin(O) - f tan(O)

(42)

Let us now consider the distortion term more care-
fully. In terms of transverse ray aberration, third-
order distortion appears as a term of the form

(43)

where ey is the transverse ray error in the meridional
plane, relative to the Gaussian image position, a5 is the
ray error coefficient, and h is the normalized image
height. Since the transverse ray error is related to
wavefront aberration via the derivative,27 there is a
relationship between the coefficients a5 and Sv, name-
ly,

1/2SV05 =nu (44)

V. Paraxial Diffractive Lens as a Fourier Transform Lens

A lens designed for use with an infinitely distant
object with the aperture stop in the front focal plane is
the configuration necessary for use in a Fourier trans-
form system.25'26 An additional requirement for this
use is that the image height Y formed by the lens
should follow the rule Y = f sin(a) rather than Y = f
tan(0), which is the rule for a lens that is designed to be
distortion free. Image heights proportional to sin(0)

where n' and u' are the refractive index and paraxial
marginal ray angle, respectively, in image space.
Thus, using Eqs. (32) and (44) and n' = 1.0 and u' =
-ylf, we find

05 = 2 I! 3.
2

(45)

Since h = 0/0m = 0/u, we see that to third order this
lens forms an image height according to the rule Y = f
sin(0), making it ideally suited for use as a Fourier
transform lens.
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Fig. 10. On-axis polychromatic modulation transfer function for the primary yellowish green emission ofaP43 phosphor. The focal length is
50 mm, Xpeak = 0.544 im, Fs#tem = 8.

With regard to imaging with this telecentric diffrac-
tive lens, it is interesting to point out that a lens with
this amount of distortion will form an image that has
uniform irradiance over the entire image plane.2 830

This is in contrast to the usual cos4-type irradiance
found in well-corrected lenses. For the diffractive
lens and Cooke triplet discussed in the previous sec-
tion, the diffractive lens image has uniform irradiance,
while the triplet image irradiance at the edge of the
image is decreased by a factor of -cos 4(9.0 0) = 0.952
from the on-axis value. At larger field angles, the cos4
losses are much more pronounced.

The uncorrected spherical aberration places a toler-
ance on the maximum usable aperture for this diffrac-
tive lens system. If we use Marechal's criterion for the
maximum allowable wavefront aberration, with the
choice of best focal plane, 31 we can tolerate, at most,
0.95X of spherical aberration. Using Eqs. (3) and (25),
we find that the semiaperture y of the aperture stop
must satisfy

max 2X kFl~S Fyttem)
(49)

Thus the 1-D space-bandwidth product (for small an-
gles) is given by

SBPlD = 2Fmax =y 1 1# )
lens system

(50)

where y satisfies Eq. (46). For example, if f = 250 mm,
A = 0.58756 Am, FflnS = 3, and F#ystem = 8-3 (i.e., y = 15
mm), SBP1,D 5400. For comparison, a six-element
refractive Fourier transform lens designed by Matsui
et al.3 2 has a 1-D space-bandwidth product of -5200.

As mentioned above, we allow the nominal focal
plane to differ from the paraxial focal plane to offset
the aberrational effects of spherical aberration. We
can calculate the position of this plane of best focus by
finding the focal shift that minimizes the rms wave-
front aberration. Considering only defocus and third-
order spherical aberration, the wavefront aberration
polynomial has the form

Y ' 47.6f
3 X (46)

for the system not to exceed the Strehl tolerance limit.
A useful quantity for evaluating the performance of

a Fourier transform lens is the space-bandwidth prod-
uct of the lens, which is an estimate of the number of
resolvable spots that the system is capable of forming.
In one dimension, the object is equal to the diameter of
the entrance pupil, which is equal to twice the value of
y. The largest spatial frequency Fmax accepted by the
lens is related to the largest diffracted angle Omax by the
grating equation, simplified for the case of normally
incident illumination and the first diffracted order:

W(h,p,cos5) = W02Op2 + W 40 p4, (51)

where W020 and W040 are the coefficients of defocus
and third-order spherical aberration, respectively. It
is well known that in this situation Wrms is minimized if
W020 = -W 040.33 W020 is related to the shift from the
Gaussian image plane X via the relation34

x 2W20
/ /,2 (52)

Using W040 = SI/8, the value of SI given by Eq. (10), the
relation Fystem = -1/2u' (Fs#stem is the f/No. of the
system), and Eq. (52), we find that the proper focal
shift is

XFnax = sin(Omax). (47)

The spatial frequency F is related to a periodicity d by
F = 1/d. Figure 11 illustrates the parameters in Eq.
(47). Using Eq. (37) for Omax, the largest unvignetted
spatial frequency is given by

Fmax = intan - ' - 1 t]I (48)

sio L in. Ff6.em

For small angles sin(O) tan(O), and Eq. (48) simplifies
to

x -f
Wtys~te. )2

(53)

For the parameters in the example above, F#stem = 8.3
and f = 250 mm; thus the proper focal shift is X = -227
,m. (A negative value for the focal shift means that
the best focal plane lies closer to the lens than the
paraxial focal plane.) The small amount of higher
order spherical aberration will change the position of
the optimal focal plane only slightly from the position
given by Eq. (53). This paraxially designed profile has
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Fig. 11. Optical layout and parameter definitions for an optical Fourier transform. Spatial frequencyFis related to object periodicity d byF
= 1/d. For normally incident illumination, the grating equation reduces to sin(O) = /d = XF.

been previously proposed as a Fourier transform
lens.35 Kedmi and Friesem arrived at their result by
minimizing a merit function which was proportional to
the difference between the actual diffracted wavefront
and the desired wavefront. However, the present
analysis reveals more information about why the par-
axial diffractive lens performs well in this capacity and
also allows for the easier calculation of performance.

We could use the diffractive lens in conjunction with
the aspheric plate described in an earlier section to
provide a Fourier transform system for objects larger
than those allowed by Eq. (46). At first thought, it
may seem that increasing the space-bandwidth prod-
uct is always possible just by increasing y. However,
increasing the object size, i.e., decreasing Fsfstem, will
reduce the largest unvignetted field angle accepted by
the system (or equivalently Fmax), according to Eq.
(49). Thus we should be able to find an aperture sizey
so that the space-bandwidth product is maximized.
Using Eq. (35), Eq. (50) can be rewritten as

SBP / D 1 2y\ 54

(W~en. f(4
We maximize SBP1 D by setting (dSBPlD/dy) = 0,
recalling that Fli. is a constant. The result is

f ,f (55)
4Flens

or, using Eq. (36),

y = a/2. (56)

Thus we see that the maximum space-bandwidth
product is achieved when the aperture diameter is
equal to one-half of the lens diameter.36 Equation
(56) can be equivalently rewritten as

Ff4 .tem= 2Fe..- (57)

Thus far we have assumed that the diffractive lens is
being used at the design wavelength X0 so that the
diffraction efficiency is maximized. However, coma
and astigmatism can be made to vanish for any wave-
length X if the stop-lens distance is

t( ) = -i f.
X

(58)

Obviously the Gaussian focal plane is also a function of
wavelength in accordance with Eq. (15). With the
stop position dictated by Eq. (58), the distortion coef-
ficient retains the correct value for use as a Fourier
transform lens. Thus this single diffractive lens could
be used in an optical processing system with more than
one laser source as long as the stop position and focal
plane can be chosen properly for each wavelength.
The diffraction efficiency will decrease from its peak
value at X0, but for kinoform lenses the diffraction
efficiency remains above 80% for a fractional band-
width (AX/Xo) > 50%.

VI. Summary

We have shown that by utilizing the position of the
aperture stop as a variable in a single diffractive lens
system, the field aberrations of coma and astigmatism
can be made zero. This is possible by allowing the
element to have some remaining spherical aberration.
Since diffractive lenses also have a zero value for the
Petzval sum, this lens has a flat field in both tangential
and sagittal meridians. This simple lens can be used
to form high quality images over a wider field of view
than is possible with conventional optically recorded
holographic elements. Since the wavelengths of ther-
mal IR radiation are -20 times longer than those of
visible light, the Fresnel zones of an IR diffractive lens
are comparatively wider. This allows for the fabrica-
tion of faster elements that could be used at wider field
angles, a property that makes this device particularly
attractive for use in the IR. For use at larger aper-
tures, a Schmidt camera type aspheric corrector plate
could be inserted at the stop to correct the spherical
aberration. Since the desired stop position is in the
front focal plane and the remaining distortion is such
that the image height is proportional to the sine of the
incoming field angle, this system forms a simple, yet
well-corrected, Fourier transform lens.
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