Effects of diffraction efficiency on the modulation
transfer function of diffractive lenses

Dale A. Buralli and G. Michael Morris

Diffractive lenses differ from conventional optical elements in that they can produce more than one image
because of the presence of more than one diffraction order. These spurious, defocused images serve to
lower the contrast of the desired image. We show that a quantity that we define as the integrated
efficiency serves as a useful figure of merit to describe diffractive lenses. The integrated efficiency is
shown to be the limiting value for the optical transfer function; in most cases it serves as an overall scale
factor for the transfer function. We discuss both monochromatic and polychromatic applications of the
integrated efficiency and provide examples to demonstrate its utility.

1. Introduction

Recent advances in manufacturing techniques!-3 have
brought about many interesting developments in
diffractive optical elements.# The ability to produce
an arbitrary wave front with a diffractive element
gives the optical designer a powerful tool to use in the
design of modern optical systems. However, in addi-
tion to the normal considerations of focal length,
aberration correction, and the like, with diffractive
optics the designer must also be aware of the effects
that diffraction efficiency has on the image-forming
characteristics of the lens. The usual scalar-diffrac-
tion-theory treatment of diffractive lenses indicates
that with the proper surface profile, surface-relief
diffractive lenses (or kinoforms) should be capable of
diffracting 100% of the incident energy into a single
diffraction order.® However, results from rigorous
electromagnetic grating theory indicate that diffrac-
tion efficiencies of less than 100% can be expected,®
particularly when the grating period is of the same
order as the wavelength of the light. Thus we expect
the efficiency of a diffractive lens to vary across the
area of the lens as the ratio of wavelength to grating
period changes. In addition to these deviations of
diffraction efficiency from the scalar-theory predic-
tion, if the diffractive lens is used in spectrally
broadband light, even the scalar theory predicts
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efficiencies of less than 100% when the wavelength is
changed from the design wavelength. In the general
case the efficiency of a diffractive lens is a function of
both pupil position and wavelength.

The effect of nonunity diffraction efficiency is illus-
trated schematically in Fig. 1. The energy diffracted
into the order of interest is focused to form the
primary component of the point-spread function,
while the other orders, generally largely out of focus,
form a background of comparatively large spatial
extent.

The purpose of this paper is to show, once the
diffraction efficiency is known, how to quantify the
effects of non-100% efficiency on the optical transfer
function of systems that may contain diffractive
lenses. We show that a quantity that we call the
integrated efficiency serves as a useful figure of merit
for evaluating diffractive lenses. This integrated
efficiency describes the deterministic loss of energy
into background diffraction orders, not the effects of
random-surface scatter. Section 2 introduces the
concept and definition of integrated efficiency. The
relationship of integrated efficiency and the optical
transfer function is explored in Section 3 and an
illustrative example is presented in Section 4. In
Section 5, we conclude with an extension to broad-
band systems by introducing the polychromatic inte-
grated efficiency. In this paper we do not attempt to
provide a rigorous prediction of diffraction efficiency
for a diffractive lens. The diffraction efficiency will
depend on the particular optical system parameters
being considered: wavelength, lens material, an-
gle(s) of incidence, polarization, and so on. Inter-
ested readers are referred to the literature on rigor-
ous grating theories if they wish to investigate the
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Fig. 1. Schematic illustration of the point-spread function for an
optical system that contains diffractive elements. The point-
spread function comprises two components: a focused component
caused by the diffraction order of interest and a background
component, not necessarily uniform, of large spatial extent caused
by the other diffraction orders.

complicated interrelationships of the parameters gov-
erning grating efliciency.

2. Definition of Integrated Efficiency

Throughout this paper we will refer to a quantity that
we call the integrated efficiency, m;,;. In this section
we define this quantity so that in the following
sections we can see its relationship to meaningful
imaging-performance measures. Our analysis is
based on a linear systems approach, which has proved
useful in assessing the effects of stray light in optical
system performance.”™® Although the pupil function
for a system that contains diffractive optics will
generally be a complicated function because of the
possible presence of many diffracted orders, for our
purposes we shall consider the pupil function to
consist of two components. One part of the pupil
function is for the diffracted order of interest, i.e., the
order that forms the desired image. We shall call
this term the m = 1 term because usually it is the first
diffracted order that is used, although in this context
the m = 1 designation is strictly a label. The other
component of the pupil function is caused by the
other diffracted orders that propagate to the exit
pupil and hence to the image. These other orders
will be denoted by the term BG, because these orders
serve to provide a background level of illumination in
the image plane. Thus, if we denote the amplitude
transmittance by ¢ and the wave-front aberration
(optical path difference) by W, we can write the pupil
function P as a function of pupil coordinates u and v
as

P(u, v) = t,-1(u, v)exp

i;Wm=1(u) U)

k
+ tpa(u, v)exp i;WBG(u, v @

where £ = 2w/\, \ is the vacuum wavelength of the
light and »' is the image-space refractive index. The
squared modulus of the m = 1 term is the local
diffraction efficiency, Mg, i€, the diffraction effi-
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“distance from the exit pupii-te.the image plane.

ciency at the point (u, v) in the pupil:
Niocal, v) = |tm=1(U, v) |2. (2)

We define the integrated efficiency m;,; as the pupil-
averaged value of Mg, 1.€.,

1 o (o
Mint = 24— f_ N f_ . Mocal(%, V)dudv, 3)

pupil

where Ay, is the area of the exit pupil and mjgea
(&, v) = 0 for points (u, v) outside the boundary of the
pupil.

The point-spread function I(x, y) corresponding to
the pupil function P(u, v) is the squared modulus of
the Fourier transform of the pupil function, with
spatial frequencies corresponding to scaled displace-
ments in the image plane.l® We can define two
amplitude-impulse responses corresponding to the
two components of P(u, v), which we call A,_,(x, y)
and hpg(x,y). These amplitude-impulse responses
are given by (assuming n’ = 1 for simplicity)!!

1 00 [
hones®,9) = 55 [ [ e t, v)explik Wy, )]

—i2m
B (xu + yv)

X exp dudv, (4a)

1 0 o0
hoo, ) =335 | | taotw, viexplikWao(u, v)]

—i2
R (xu + yv)

X exp. dudv, (4b)

where R is the radius of the reference sphere, i.e., the
The
point-spread function is then the squared modulus of
the sum of the amplitude-impulse responses:

I(x,y) = |h’m=1(x1y)‘2 + lhBG(x,y)lz
+ A *(x, y)hpsx, y)
+ h’m:l(x’ y)hBG*(x’ y)- (5)

In Eq. (5) the asterisk denotes the complex conjugate.
The cross terms in the expression for the intensity
given in Eq. (5) will affect the intensity at an image
point (x,y) in a small way. However, for the pur-
poses of this paper, we are only interested in their
effects on the calculation of the optical transfer
function (OTF). Because the spatial extent of
hpg(x,y) will generally be much larger than that of
hn-1,y), we expect that the contribution of the
background terms to the OTF will be significant only
near the origin of the OTF. The value at the origin
of the OTF is proportional to the integral of Eq. (5)
over all x and y. The analysis in Appendix A shows
that these integrals of the cross terms are zero.
Note that even though the appendix considers the
case of a one-dimensional function, a nonlinear lim-
iter analysis'? shows that the conclusions of the



appendix are valid for our case of interest—a rotation-
ally symmetric diffractive lens. Thus, for the pur-
poses of approximating the OTF for a diffractive lens,
these small cross terms may be ignored.

From the analysis in the appendix we see that for
most cases of interest, the small cross terms in Eq. (5)
can be ignored and we can write the point-spread
function as

I(x, y) = |hm.—_1(x, y) |2 + lhBG(x’ y)|2. (6)

The form of the point-spread function has been
illustrated schematically in Fig. 1. It is convenient
to normalize the components of the point-spread
function by Ay, so that the total amount of energy in
the point-spread function is unity. We denote these
normalized point-spread function components by the
superscript 1 so that

f:o f: =", 3) Pdxdy
+ f—i ﬁ; |hecCx, y)Pdxdy = 1, (7)

I'@,y) = [hpi'@, P + |hag'@, NP (8)

Because k,,-1(x, y) and ¢, (u, v)expl[ikW,,_;(u, v)] are
a Fourier transform pair, it follows from Egs. (2), (3),
(4), and (7) that

it = Jo [ e, ) Pdy. 9

Equation (9) is just a statement that m;, is the
fraction of energy in the focused component of the
point-spread function.

3. mnint and the Optical Transfer Function

In this section we quantify the effects of nonunity
diffraction efficiency on the OTF. The optical trans-
fer function OTF(f,,f,) as a function of spatial
frequencies f; and f, is the Fourier transform of the
point-spread function I'(x, y):

OTF(f, f) = [~ [ ', »

X exp[—i2w(fx + fy)ldxdy. (10)

We can separate the OTF into two components
corresponding to the m = 1 and BG terms:

OTF(f., f,) = OTF,=1(fo, ;) + OTFpe( £y, £).

It is instructive to examine the low-frequency behav-
ior of the transfer function. Obviously, atf, =f, =0
the OTF must be equal to one. This assumption can
be verified by setting f; = f, = 0 in Eq. (10) and using
the expression for I(x, ¥) given in relation (8):

(11)

OTF©, 0 = [ [ [Rpoiler, y) Pdxdy

+ ff; f_i, |hpglx, y)Pdxdy = 1.  (12)

In terms of the two components of the OTF we have
OTF,,_1(0, 0) = My, (13a)

OTFBG(O, 0)=1- MNint-
(13b)

The Taylor expansion of OTF,,-; (f;, f,) around f, =
fy=10is

OTFm=1( fo f;/) = OTFm=1(O, 0)

. [aOTFm=1L P
ofc  lopeo”

. [aOTFmﬂ]
af;, fx

Thus we see from Egs. (13a) and (14) the important
result that, for the diffracted order of interest, n;, is
the limiting value of the transfer function for the m =
1 component as f, and f, tend to zero. At zero spatial
frequency the OTF is equal to unity, but for small,
nonzero frequencies the transfer function for the m =
1 order tends toward m;,; rather than one.

In many cases we can take this analysis one step
further. Let us assume that, in the image plane, the
background orders have a much larger spatial extent
than the order of interest. This is a reasonable
assumption, because the order of interest is being
used to form an image and the background orders
form (generally) extremely out-of-focus images.
These background orders create optical systems of
different focal lengths that operate concurrently with
the system utilizing the order of interest. If, in
image space, the background has a much larger
spatial extent of nonnegligible irradiance than the
focused order, then in the transfer function space it
follows that the background has a much smaller
extent than the order of interest. This conclusion is
drawn from the fact that the transfer function and
point-spread function are a Fourier transform pair.
Hence, to a good approximation, the background
orders contribute to the transfer function only at very
low (near zero) spatial frequencies, with a value of
1 — mjy from Eq. (13b). Strictly speaking, of course,
we need to know the functional form of Agg(x, y) to
calculate the transfer function accurately. How-
ever, for simplicity, the earlier analysis of this paper
indicates that we can, for the purposes of approximat-
ing the OTF, treat the effect of the background terms
onthe OTF as a Kronecker delta. Denotingt,,-,(u, v)
expltkW,,-1(u, v)] by P,_:(u,v), we can write an
approximate expression for the transfer function as

W M R

pupil

® P,._(u, v)dudv
+@0Q - nint)af,c,osf:v,O’

£+, (14)

=f,=0

OTF(f,f,) =

(15)

where ® is the autocorrelation operator and 3,4 is the
Kronecker delta. We restate that relation (15) is an
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approximate expression for the OTF: it is valid
when the background terms have a much larger
spatial extent than the focused diffraction order.
If the true functional forms of the background terms
were known, a more accurate expression for the
transfer function could be found by Fourier transfor-
mation. Using the definition of m;,; given by Eq. (3),
relation (15) can be rewritten as

OTF(f., f,)
Nint f_ u; f_ Z P, -1(u, v) @ P,-1(u, v)dudv

i f_: J:Z |1, ) |2dudv

+ (1 = mMing)87,087, 0.

(16)

From relation (16), we see that the transfer function
consists of a component caused by the m = 1 pupil
function, scaled by m;,, with a spike at zero spatial
frequency.!3 A major effect of the background or-
ders is to reduce the contrast, particularly at lower
spatial frequencies. That the contrast should be
reduced by the background orders is no surprise,
because it can be thought of as stray light, albeit stray
light produced by the optical system itself. The
important result is that the effects on the image of
* this stray light can be quantified with a single param-
eter that is directly related to the diffractive optical-
element performance—the integrated diffraction effi-

ciency, Migg.

4. Example of Diffraction-Efficiency Effects on Imaging

It has been found, both experimentally and theoreti-
cally, that the diffraction efficiency of a diffractive
lens is a function of radial position on the lens.!
This deviation from the scalar prediction of 100%
efficiency is generally caused by both fabrication
errors and possible nonvalidity of the scalar theory.
For example, for fnumbers less than ~10, even a
perfectly constructed diffractive lens exhibits a varia-
tion of efficiency with radial position. This variation
results from the facts that faster lenses have smaller
zone widths, and that as the grating period becomes
smaller (with respect to wavelength), the scalar-
diffraction theory is no longer adequate to describe
the efficiency. For example, a recent paper!5 showed
that for diffractive lenses used in the 8- to 12-um
thermal-infrared spectral region, the diffraction effi-
ciency is approximately a linear function of radial
position. In this section, we provide an example of
the performance of a diffractive lens with a particular
choice of the variation of diffraction efficiency with
radial position. We have chosen forms for the local
diffraction efficiency that are mathematically conve-
nient, qualitatively consistent with the known behav-
ior of actual lenses, and that illustrate the conclu-
sions drawn in Section 3. The reader interested in
the performance of particular diffractive lenses will,
of course, need to determine the pertinent efficiency
functions.

For simplicity, let us consider a one-dimensional
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example in which the pupil function contains only the
m = 1 order and a single background-order compo-
nent. We further assume that the m = 1 order is
aberration free. Thus any departure of the OTF
from the diffraction limit will be solely caused by the
effects of nonunity diffraction efficiency. The optical
system is schematically shown in Fig. 2, wherein a
single diffractive lens is used to image an infinitely
distant object. In this case, the m = 0 and m = 2
orders (which will usually be the highest-efficiency
background orders) are (geometrically) the same size
as the pupil. Thus, we will approximate the back-
ground term as just the geometric projection of the
exit pupil on the image plane. This is a good ap-
proximation for points deep within the region of
Fresnel diffraction.’® For computational simplicity,
we choose the amplitude-transmission functions as

(17a)
(17b)

tym=1(t) = cos(au),
tpe(w) = |sin(au)|.

In Egs. (17) a is a parameter that describes the pupil
dependence of the local diffraction efficiency, which is

MNocat() = cos?(au). (18)

We would expect the larger values of @ to correspond
to faster-speed lenses, which have larger wavelength-
to-grating period ratios and larger departures from
the unity diffraction efficiency predicted by simple
scalar theory. The integrated efficiency resulting
from the local efficiency of Eq. (18) is easily found to
be

1

sin(aD)
Nint = é 1+

aD

) (19)

where D is the width of the one-dimensional pupil.
For our example pupil width of D = 20 mm, the local
efficiency as a function of pupil coordinate is shown in
Fig. 3, for several values of the parameter a.

The amplitude-impulse response is given by the
Fourier transform of the m = 1 pupil function, Eq.

Diffractive Image
Lens Plane
m=1
Optical
m=2 Axis
=0
f/ 22—

Fig. 2. Optical layout of single diffractive lens that images an
infinitely distant object. The annotation m refers to the order of
diffraction.
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Fig. 3. Local diffraction efficiency as a function of pupil coordi-
nate u for the imaging example discussed in the text. The pupil
width is D = 20 mm, the exit pupil-image plane distance is B = 100
mm, the wavelength is A = 0.5 pm, and the local diffraction
efficiency is Mocal(tt) = cos(au).

(17a), and the geometric projection of the background
pupil function, Eq. (17b). Performing this operation
and taking the squared modulus yields, for the point-

spread function,
- ZTrx)D} - +2'n-xD
sinflla — —| 7| sinfle + —| =
1 AR/ 2 AR/ 2
I = D? 2mx\2 2mrx\2
Vo) v
2wDx
S v e cos(aD)
il )
+ D2 - o + AR sin?(ax)|,
v 1 vy
|x| < (D/2), (20a)
L, 21'rx)D} [, 2| D
sinfla — — || sinfla + —| 5
1 AR/ 2 AR 2
Iz) = D? 2mx\2 2mx\2
o) o)
2wDx D
cos| S| — cos(aD) /s
+ 2mx 2mx\ | [ > (D/2).
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1.0 Diffraction Limit (a = 0.0)
0.8 a=0.05; My, = 0.921
£ 06
w a=0.10; Nint = 0.727
s 0.4
ooLas= 0.157
Nint = 0.50
0.0 L

1
0 100 200 300 400

Spatial Frequency (lines/mm)

Fig. 4. Modulation transfer functions (MTF’s) for the imaging
example. The wavelength is 0.5 pm and the system f~number is
F/5.
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Fig. 5. Point-spread functions (PSF’s) for the imaging example.
I is the value of the Strehl intensity for each value of a.

Equations (20) are normalized such that I(0) = 1.0
fora = 0. Taking the Fourier transform of Egs. (20)
gives the OTF

1
OTF(f,) = 55 {(D — \Bf,)cos(aRf,)

sinfa(D — \Rf,)] sin(‘erf;)]
+ +
a 7t
sin[D(a — =f.)]
2(a — wfy,)
| fe| < D/(\R).

1
~ 2D

sin[D(a + =f,)]
2@+ wf) |

(21

The first two terms in the expression for the OTF are
caused by the m = 1 diffraction order; we can see that
these two terms are equal to m;y,; given by Eq. (19) for
f.=0.

For example values of R = 100 mm, D = 20 mm,
and A = 0.5 pm, the OTF(f;) as given by Eq. (21) is
shown in Fig. 4 for several values of a. This figure
demonstrates the results of the previous section:
MNint 1S the limiting value for the OTF for low spatial
frequencies and m;,; acts as a scale factor for the
entire transfer function. For the larger values of a,
one can see the apodization-like effects of the local
diffraction efficiency. One must look at spatial fre-
quencies of less than one-half line/mm to see a
significant nonzero contribution from the BG term to
the OTF.

The point-spread functions for this example case
are shown in Fig. 5. Also, Table 1 provides addi-
tional data derived from these spread functions:
FWHM is the full width of the spread function at the
half-power points and EE is the fractional energy

Table 1. Integrated Efficiency, Full-Width-at-Half-Power Points, and
Energy Enclosed Within the First Zeros of the Diffraction-Limited
Point-Spread Function for the Example Pupil Functions
Described in the Text

a Tint FWHM(pm) EE(x = 2.5 pum)
0.0 1.0 2.215 0.903
0.05 0.921 2.256 0.846
0.10 0.727 2.410 0.698
0.157 0.500 2.972 0.485
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enclosed within = 2.5 pm of x = 0 (The first zero of
the diffraction-limited point-spread function is at
x=+25 pm). This data shows that some care
must be taken in choosing a meaningful merit func-
tion for diffractive optics. For example, in this case
the FWHM increases only slightly, but EE decreases
by almost a factor of 2 for a change in m;,, from 1.0 to
0.5. Hence FWHM is not a good metric to character-
ize the performance of a diffractive lens.

5. Polychromatic Integrated Efficiency

In general, the efficiency of a diffractive structure will
be a function of the wavelength of the light.5 Ifthere
are diffractive optics in a system that utilizes spec-
trally broadband illumination, the wavelength depen-
dence of the diffraction efficiency must be considered
when evaluating imaging performance. To deter-
mine the polychromatic transfer function for a diffrac-
tive lens, we first need to define a polychromatic
integrated efficiency for the wavelength band ranging
from Mg, to Apae  This quantity is defined in a
manner similar to n;,, except now the integration is
over wavelength rather than over the pupil plane
coordinates. Denoting the integrated efficiency at
wavelength A by m;,(\), we find that the polychro-
matic integrated efficiency is

Al'ﬂﬂx
Lm0y

)\max -

(22)

MNint,poly = A

min
In general, m;,(\) will be a pupil-averaged integrated-
efficiency value for each wavelength. The polychro-
matic optical transfer function, OTF,,y, is defined as
the spectral average of the monochromatic transfer
functions!”

I\ :““" SMOTF (£, f; NdX

OTFpoly( fo f;‘v) = ’
" S(VAM

mm

(23)

where S(\) denotes the spectral distribution and
responsivity of the source—detector combination.
For a diffractive lens, the polychromatic OTF is the
value of the transfer function, relation (16), spec-
trally averaged over the desired wavelength band.
Denoting the polychromatic transfer function, includ-
ing the effects, if any, of the S(\) term, corresponding
to the m = 1 order by OTF,,-;paycs, f) and using
similar reasoning as for the monochromatic case, we
find an approximate polychromatic transfer functlon
given by

0'I‘Fpoly( foly) = 'r]int,polyOTFm=1,poly( fofy)

+ (1 (24)

Note that one additional approximation is used in the
derivation of relation (24)—the average of the prod-
uct Min:(WOTF(\) is approximately equal to the prod-
uct of the averages of the two individual terms.

In many cases, the diffractive component or compo-
nents of broadband systems will be weakly powered

~ Mint,poly )8&,08/_;»0 .
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Fig.6. Scalar value of the diffraction efficiency mgcalar as a function
of the wavelength-detuning parameter Ao/\ for the diffraction
ordersm =0, 1, and 2.

because of the large chromatic dispersion of diffrac-
tive optics. In these situations, the wavelength-to-
grating period ratios will be small across the entire
lens and the scalar predictions of diffraction efficiency
are valid. If this is the case, we can provide an
explicit expression for ny; 5.  The scalar-diffraction-
theory value for the diffraction efficiency in order m
for wavelength M\ is given by (ignoring the small effect
of the dispersion of the lens material)!8

Ao
X m
E 2
Y~ ™
where )y is the design wavelength for the lens.
Figure 6 is an illustration of Eq. (25) form = 0, 1, and
2. The expression for mgaa-(\) given by Eq. (25)
cannot be explicitly integrated, but an approximate
expression for miyp, can be found by expanding
Mscalar(A) In @ power series and integrating term by

term. Theresulting approximate expression, assum-
ingm=1,is

sin?|r

'T]scalar()\) = ’ (25)

2
o
Mint,poly = 1+ 3_)\0 O\mjn + Amax - )\0)

2

ey
~ oy 2 O\mm

ot (26)

Amin)\max + )\max2)'
Table 2 provides some examples of the validity of the
approximation of relation (26). The table compares
the value of My poy given by relation (26) and by

numerical integration of Eq. (25) form = 1.

Table2. Approximate and Exact’ Polychromatié Integrated Efficiencies
for Several Spectral Regions, Based on the Scalar Prediction of
Diffraction Efficiency

Ao (wm) Amin (Mm) Amax (om) 'nint,polya "]int,polyb
0.55 0.40 0.70 0.9184 0.9139
4.0 3.0 5.0 0.9315 0.9281

10.0 8.0 12.0 0.9561 0.9546

°From relation (26).

®Numerical integration of Eq. (26).
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Fig. 7. Polychromatic modulation transfer functions (MTF’s) for
two spectral bands. a)F/5 system (circular exit pupil) with a
center wavelength of A\p = 0.55 pm and a spectral bandwidth of
0.40-0.70 pm. The value of mMintpoly is 0.914. b) F/2 system
(circular exit pupil) with a center wavelength of A\ = 10.0 pm and a
spectral bandwidth of 8.0-12.0 um. The value of Mjnt,pory is 0.955.

Figure 7 shows polychromatic transfer functions
calculated by using the scalar expression for diffrac-
tion efficiency, Eq. (25). The resulting curves show
the behavior predicted by the approximate expression
of relation (24): the m = 1 polychromatic OTF
scaled by mMin poiy and a zero-frequency spike.

6. Conclusion

We have presented an analysis of the OTF achievable
with diffractive lenses that have a nonunity diffrac-
tion efficiency. These losses in diffraction efficiency
may be a result of high wavelength-to-grating period
ratios (departures from scalar-diffraction conditions),
manufacturing inaccuracies, or, in the case of broad-
band systems, wavelength detunings from the design
wavelength. It is seen that the integrated efficiency,
Mint, €can be served as a useful one-number merit
function for describing the diffraction efficiency of
diffractive optical elements. A complete characteriza-
tion of an optical system that contains one or more
diffractive components should include, in addition to
conventional aberration analysis, an evaluation of
Mint, Which will generally be a function of field position.
Because the presence of the background orders is a
real component of a diffractive system, interferomet-
ric and spread-function testing optics may give dif-
fering results, depending on how the background
orders are handled in the analysis.!'® Because 7y is
the fractional energy in the order of interest that
reaches the image plane, the deleterious effects of the

background orders may be reduced by careful system
design, permitting as much as possible of the back-
ground orders to be vignetted out of the system.
This reduction, of course, does not increase the
diffraction efficiency of the lens itself, but it may
increase the value of m;,; measured in the pupil. The
concept of integrated efficiency is easily extended to
the polychromatic case by defining a wavelength-
integrated polychromatic integrated efficiency, nint,poty,
which acts as a scale factor for the polychromatic
transfer function.

APPENDIX A. Evaluation of Cross Terms in Eq. (5)

Let us consider the cross terms in Eq. (5) more
carefully. In many cases the diffractive lens pupil
function will be represented by a Fourier series. For
simplicity, consider a one-dimensional function f(x) of
period L. We can write f(x) as the Fourier series

fx) = D, ¢, expG2mmfyx), (A1)

m=-—w

where fy = 1/L. If fx) is a pure phase function, as is
the case for a nonabsorbing diffractive lens, then
f)| = 1. Let us further assume that f(x) = 0 for
x| > (D/2) and that the interval —D/2 < x < D/2
contains an integral number of periods L, so that the
Fourier series expansion is valid everywhere in
—-D/2 <x < D/2. Inotherwords,D = NL, where N
is a positive integer. By Parseval’s identity for Fou-
rier series,

1 L od
T k= 3 jear. (A2)
For our case of |f(x)|2 = 1, Eq. (A2a) reduces to
D lemP=1 for|x| <D/2.  (A2b)

m=—-w

Equations (A2) are a statement of conservation of
energy. Let us denote the Fourier transform of f(x)
by F(f,). Taking the transform of Eq. (A1) and
recalling that f(x) is zero outside |x| < (D/2), we can
write

F(f) = O e,DsinclD(f, — mfy)l,

m=—ow

(A3)

where sinc(x) = sin(mx)/(mx).
of F(f,)is

The squared modulus

|F(f)]E= D |c,[2D? sincD(f, — mfy)]

m=-w

+ D (Cme,*)D?

mp=—o0

m#n
x sine[D( f, — mfy)1sine[D( f, — nfy)].
(A4)
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The total energy in F( f,) is found by the integration
of Eq. (A4). Integration of the sinc functions in the
second term on the right-hand side of Eq. (A4) yields

f_ Z D? sine[D( f, — mfy)] sinc[D( £, — nfy)1df.
= D sinc[Dfy(m — n)]. (A5)

Note, however, that Df, = D/L = N, so the argument
of the sinc function in Eq. (A5) is N (m — n), which is
always a nonzero integer for m = n. Because the
sinc function is zero for nonzero integer values of its
argument, we see that the cross terms in the integra-
tion of Eq. (A4) integrate to zero, i.e., they have no
contribution to the total energy in F( f;).

If the pupil function for the diffractive lens is given
as an expansion in an orthogonal basis set, such as a
Fourier series, the above analysis reveals that the
cross terms in Eq. (5) contain no energy:

f-i f_t, Rp=1*(x, Y)hpc(x, y)dxdy

= [ 7 Bppere, phpe*x, y)dxdy = 0. (A6)

At each point (x,y) in the image plane, k,-1*(x, y)
hpg(x, ¥) and h,,-(x, y) hpg*(x, y) may be nonzero and
contribute to the irradiance at that point, but because
they always integrate to zero, they do not affect the
value at the origin of the OTF. [See Eq. (12).]
Also, as we discussed in Section 3, because A,,-,(x, y)
and hpglx,y) will usually have a much different
spatial extent and the cross terms in Eq. (5) are
essentially a measure of the overlap of 4,,—;(x, y) and
hpg(x, y), the magnitude of A,,-,*(x, y) hgglx, y) and
hm=1(x, y) hpg*(x, y) will usually be small. For these
reasons, we ignore these cross terms in the analysis
following Eq. (5).
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